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ABSTRACT

The steady state interaction of two electrically biased

parallel plates immersed in a flowing plasma characteristic of

low earth orbit is studied numerically. Fluid equations are

developed to describe the motion of the cold positively

charged plasma ions, and are solved using finite-differences

in two dimensions on a Cartesian grid. The behavior of the

plasma electrons is assumed to be described by the Maxwell-

Boltzmann distribution.

Results are compared to an analytical and a particle

simulation technique for a simplified flow geometry consisting

of a single semi-infinite negatively biased plate. Comparison

of the extent of the electrical disturbance into the flowing

plasma and the magnitude of the current collected by the plate

is very good.

The interaction of two equally biased parallel plates is

studied as a function of applied potential. The separation

distance at which the current collected by either plate
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decreases by five and twenty percent is determined as a

function of applied potential. The percent decreases were

based on a non-interacting case. The decrease in overall

current is caused by a decrease in ionic density in the region

between the plates. As the separation between the plates

decreases, the plates collect the ions at a faster rate than

they are supplied to the middle region by the oncoming plasma

flow.

The docking of spacecraft in orbit is simulated by moving

two plates of unequal potential toward one another in a quasi-

static manner. One plate is held at a large negative

potential while the other floats electrically in the resulting

potential field. It is found that the floating plate does not

charge continuously negative as it approaches the other more

negatively biased plate. Instead, it charges more and then

less negative as ionic current decreases and then increases

respectively upon approach. When the two plates come into

contact, it is expected that the electrically floating plate

will charge rapidly negative to a potential near that of the

other plate.
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NOMENCLATURE

Symbol

k

q

oooo.oooo

.......... charge

Description Units

Boltzmann constant .......... 1.38"10 .23J/K

characteristic length ....... m

gUOmWO_UOUnQIU_QOUO_OO C

.......... collision frequency ......... sI

j .......... current density ............. A/m 2

AD ......... Debye length ................ m

p .......... density ..................... kg/m 3

E .......... electric field vector ....... V/m

.......... electric potential ..........

e .......... electronic charge ...........

F .......... flux density ................

u_ ......... ion sound speed .............

m .......... mass ........................

.......... mobility ....................

n .......... number density .............. m-3

LToT ........ plate length ............... m

p .......... pressure .................... N/m 2

S o..o,u.i,_

T eoouu,l,eo

V o_u,m,I,.

U OOOOOOOQQO

V UOOUgU_O

m QO_OIWgUlm

sheath dimension ............ m

temperature ................. K

velocity vector ............. m/s

x-component of velocity .....

y-component of velocity .....

free diffusion coefficient ..

permittivity of free space ..

V

i. 6.10 "19C

m-2s-1

m/s

kg

Cs/kg

m/s

m/s

m2/s

8.854.1042 C2/Jm

iii



tf ......... time of flight ..............

df ......... distance of flight ..........

.......... pi ..........................

J .......... normalized current density

M o ......... ambient Mach number

Sci ........ ion Schmidt number

.......... leading edge ratio

.......... ratio of specific heats

......... Reynolds number

s

m

radians

Subscripts

e ....... electron

i ....... ion

....... freestream

....... species

T ....... Thermal

p ....... plate

f ....... floating

T ....... thermal

B ....... boundary

Superscripts

S omeeeoo sheath
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CHAPTERI

INTRODUCTION

The term plasma is used to describe a large class of

basically neutral mixtures containing some electrically

charged particles. Because some of the particles are charged

they interact with each other in accordance with the coulomb-

force law. The coulomb-force is relatively long range.

Hence, in a plasma every charged particle interacts

simultaneously with many of its neighbors, giving the plasma

a cohesiveness [ref.l]. Another related feature of a plasma

is that the charged particles tend to rearrange themselves in

such a way as to effectively shield any electrostatic fields

due either to a surface at some nonzero electric potential or

to a region of net charge density within the plasma_ This

phenomena is due to the fact that particles with like charge

tend to repel while those of opposite charge attract, thereby

neutralizing charge concentrations.

In low earth orbit (LEO), the ambient plasma is composed

of neutral particles, electrons and various ionic species

[ref.2]. The neutral and ionic species are as much as 10 4
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times as massive as the electrons.

temperature, the electron thermal

Therefore, at a given

velocity is orders of

magnitude greater than that of the ions and neutrals. At an

altitude of 200 km, for example, an orbiting spacecraft has a

velocity of around 7800 m/s which is greater than that of the

thermal ions but much slower than the thermal electrons. Such

a flow is referred to as mesothermal. The plasma is also only

slightly ionized. The flow field of the neutral particles is

therefore not affected by the presence of the ionized species.

When a spacecraft is immersed in the low earth orbit

plasma, its surfaces will tend to charge slightly negative in

response to the greater mobility of the electrons relative to

the heavy positive ionic species. As the spacecraft charges,

the negative electric field begins to repel the electrons

while attracting the positive ions. Charging continues until

the positive ions can be attracted at a rate (i.e., electric

current) equal to that of the more mobile electrons. At this

point, the spacecraft has reached what is called the

'floating" potential. The plasma in proximity to the surfaces

will be redistributed in such a way as to shield the bulk of

the ambient plasma from the resulting electrostatic field.

The result will be a slightly negatively charged spacecraft

surrounded by a cloud of net positive charge. The disturbed

region where the shielding takes place is called the sheath

with dimensions that depend on the magnitude of the

electrostatic field, the properties of the plasma and the

properties of the spacecraft surface. The spacecraft thus
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imposes an abrupt boundary condition which is relaxed within

a finite distance through the sheath into the bulk of the

ambient plasma. The sheath is seen as the medium through

which the spacecraft interacts with its environment, and

knowledge of its structure is important in modeling a range of

phenomena.

The interaction is further complicated by the fact that

a typical spacecraft is composed of several materials, each

interacting differently with the space plasma. Internally

imposed electric potentials may also be present such as that

from an exposed solar array. The interconnection of the

surfaces to the spacecraft and to each other, and how the

spacecraft is connected to the power system determines how

each surface will charge in response to the plasma. Overall,

the net current to the entire spacecraft will be zero in order

for equilibrium to be established. However, this does not

necessarily mean that the net current to each surface is zero,

only that the total sum of current to all surfaces is zero.

Therefore, in general, a surface will be charged either

positive or negative relative to the floating potential.

The magnitude of the current to a surface as a function

of its properties, electric potential, proximity to other

surfaces, and the properties of the space plasma, has been the

object of many past studies. The present study focuses on how

two surfaces in close proximity will interact in the space

environment. The geometry shown in Figure 1 is that of two

parallel finite flat plates, biased to different electric
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potentials, oriented

characteristic of LEO.

5

parallel to a flowing plasma

For geometries other than the most

symmetric, computational methods must be employed to model the

interaction because analytical methods are impractical.

There are two main areas of study which consider the

interaction of a spacecraft with its environment; classical

probe theory and ionospheric aerodynamics. In Chapter II, the

approach of each will be outlined and a review of past

investigations given.

In Chapter III, the characteristics of the interaction

are identified, the governing equations are summarized, and

the numerical approach employed is described.

In Chapter IV, results from the three case studies are

presented. First, the flow field about a single semi-infinite

flat plate is compared to an analytical and a computational

approach proposed in the literature. Next, the interaction of

two equally biased plates is studied. Results are presented

which describe how the current collected by each plate is

affected by separation distance and applied potential. As a

final application, the docking of two spacecraft in orbit

(i.e. two parallel flat plates moving toward one another) will

be studied in a quasi-static manner.

Chapter V summarizes the major conclusions and areas of

future work are discussed.



CHAPTER II

BACKGROUND

The approach used to model the interaction of a

spacecraft with its environment depends on which phenomena are

being studied, and on the properties (i.e. especially the

density) of the plasma. Whether it is decided to apply a

continuum or free-molecular model to the problem usually

depends on the Knudsen number which is the ratio of the

effective plasma mean free path to the dimensions of the

satellite. If the Knudsen number is less than 0.01, then the

macroscopic continuum equations can be used. Otherwise, a

free-molecular approach should be applied. For altitudes

below about 200 km, the dimensions of a spacecraft are likely

to be of the same order of magnitude or greater than the mean

free path [ref. 3].

The two mathematical approaches most often used are the

kinetic and the phenomenological. Using kinetic theory, a

statistical approach for studying the interaction is

developed, where it is recognized that the macroscopic

properties of the plasma are due to the average behavior of

many individual particles, but where each individual

6
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particle's motion is governed by the laws of mechanics. For

a system containing N particles, a complete description of the

particles would require a specification of the positions and

velocities of each particle; but to obtain a statistical

description of the plasma, only a knowledge of the

distribution function of the molecular velocities of the

particles is required [ref.l]. The time variation of the

distribution function is described by the Boltzmann transport

equation which is a seven-dimensional equation and does not

lend itself to analytical solution. The kinetic approach can

be used to describe both free-molecular flows, where no

collisional-collective behavior occurs, and a true continuum.

Numerically speaking however, the kinetic approach is more

difficult than the phenomenological.

In the phenomenological approach, relations between

stress and rate of strain, and between heat flux and

temperature gradient are postulated, and the continuum fluid

equations are then developed from conservation laws. The

resulting system consists of a subset of the general Navier-

Stokes equations with the addition of electrical terms, and

Maxwell's electromagnetic equations. The fluid equations can

also be obtained by taking moments of the Boltzmann equations,

provided that the appropriate assumptions are made [ref.4].

The use of the fluid equations is usually restricted to high

density, collision dominated flows. However, the continuum

approach may be valid in modeling a 'collisionless' plasma

because a collective behavior may occur as a result of the
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relatively long range electrostatic forces. The literature

review to follow focuses on articles based on the continuum

fluid model in the areas of continuum probe theory and

ionospheric aerodynamics.

Continuum Probe Theory

Probes have long been used as a diagnostic tool for

measuring the properties of a plasma. Continuum probe theory

utilizes the continuum concepts of diffusion and mobility to

derive relations which enable the properties of the

undisturbed plasma to be approximated from the current-voltage

characteristics of a probe.

Electric probe theory was pioneered by Langmuir in 1924.

The Langmuir probe is still widely used as a diagnostic tool

for measuring the local properties of plasmas. A useful

summary of the available theoretical results on the use and

behavior of electric probes was given by Chen [ref. 5]. More

recently, a literature survey on electric probes was written

by Chung, et. al. [ref. 6] for collisionless, transitional,

and continuum probes. The classifications used in the second

part of the Chung, et.al, paper entitled "Continuum Probes"

are based on the relative importance of convection, diffusion,

and mobility on the motion of the charge carriers; electrons

and heavy positive ions. These effects can be better seen by

recasting the governing equations in terms of flux density,

and nondimensionalizing.

The system of governing equations consists of ion and
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electron species continuity equations, conservation of

momentum and energy equations, and Poisson's equation which

governs the electric field assuming a negligible magnetic

field. The continuity equations can be recast in terms of

flux density defined as r. = n= v=. Another equation for the

flux density can be obtained from the momentum equation, with

the result being [ref. 7]

Pa =-m.Vna +n_E (2. I)

where D_ is the free diffusion coefficient defined by

k%
D.- (2.2)

m.v_

and _ is the mobility defined by

q,
_a" (2.3)

m.va

The Einstein relation relates the two parameters

D _k%
(2.4)

From equation (2.1), flux density F is seen to be

composed of diffusion of the charged particles by means of a

density gradient (i.e. collisional process) and by the

mobility of the charged particles by means of an electric

field (i.e. electrical process). Combining the flux density

and species continuity equations, and nondimensionalizing,

results in an equation containing convection, diffusion, and

mobility terms [ref. 8,9].
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ReSc_p d ( n,,)-V.(p,,,D,,[V n" +! n=v4) ] )=0
p p T p

(2.5)

where the plus sign is for positive ions and the minus sign

for electrons. Poisson's equation in non-dimensional form is

given by

Ro )2_72¢=- (ni-n e)

(2.6)

The conservation of momentum and energy equations which

include electric body forces and electric (i.e. Joule) heating

round out the system.

The two most important parameters are seen to be R_Sci

which weighs the importance of the viscous layer and

convective effects (i.e. Prandtl boundary layer) and XD/R o

which is a measure of the electrical disturbance caused by the

probe (i.e. Langmuir boundary layer). The relative values of

_D/Ro and _Sci also determines the extent of the electrical

disturbance. For example, if the following inequalities are

satisfied, [ref. 7]

_D

( ) <IR. (2.7)

then the electrical boundary-layer is imbedded within the

viscous layer.

The different regimes of continuum probe operation can

thus be seen to be divided between the quiescent _Sci-> 0, and

convection dominated (i.e. flowing) _Sci -> _, and further
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subdivided as to the extent of the electrical disturbance.

The goal of studies in probe theory is to obtain a

theoretical or an attainable numerical current-voltage

characteristic curve for the probe, and the equations which

describe the relationship between the current and the local

plasma properties for different portions of the curve. An

experimenter can then measure the current to the probe for

different bias voltages, obtain a current-voltage curve and

from the shape of the curve determine the local plasma

properties (i.e. density and temperature). The problem is

often simplified by postulating regions where different

physical mechanisms dominate, and solving the resulting

equations accordingly.

In the small convection limit, pioneering papers were

written by Su and Lam [ref. i0], and Cohen [ref. ii] for thin

sheath, frozen chemistry, constant property plasma. The

governing equations in this case reduce to the flux-continuity

equation and Poisson's equation. For symmetric probe

geometry, the interaction becomes one-dimensional. In both

papers, an inner sheath region and an outer quasi-neutral

region were postulated, and the equations solved separately in

each region based on those assumptions. The two solutions

were matched by asymptotic expansions.

In the large convection limit, a directional flow is

superimposed upon the diffusion and mobility process and the

interaction becomes two-dimensional. Although intrinsically

more complicated than the quiescent case, an assumption was
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often made to simplify the analysis - a thin sheath was

assumed so that convective effects in the sheath could be

neglected, and the interaction in the sheath becomes again

one-dimensional. Lam [ref. 12] pioneered the work in this

area for an incompressible, constant property plasma flow

about an arbitrary solid body. It was found in this and

further work that the flow field naturally divided up into

three or more regions; the inviscid region where convection

dominates, the viscous layer where both convection and

diffusion processes occur, and the sheath in which convection

is neglected compared to diffusion and mobility [ref. 8,9].

It should also be noted that as the bias voltage of the probe

becomes more negative, the influence of convection decreases

and that of diffusion and mobility increases. This point was

used by Stahl and Su [ref. 13], and subsequently by Giles,

et.al. [ref. 14], to make it possible to ignore convection

even when the sheath region approaches the thickness of the

viscous layer.

In the case when a thick sheath is dealt with explicitly,

Poisson's equation becomes two-dimensional and convective

effects in the sheath are important. Johnson and Deboer

[ref. 15] included the convection effects for high speed

plasma flow over flat-plate and cylindrical probes aligned

parallel with the flow. Russo and Touryan [ref. 16] gave a

rather complete analysis including finite chemical reactions

at a range of probe potentials.

In order for current to flow, two electrodes must be in
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contact with the plasma. In electrostatic probe theory, the

simplest technique is to use a single probe and to assume that

the second conceptualized electrode is grounded at the

undisturbed plasma potential. Chung and Blankenship [ref. 17]

explained that this approximation is not always reliable and

developed the theory of an electrostatic double probe

consisting of two finite parallel plates. The flow field was

divided into different physical regimes, and the governing

equations solved accordingly. In the development, it is

assumed that the sheaths of the two plates do not interact

directly

region.

between

but are separated by a

The mechanism by which

the two plates through

discussed.

quasi-neutral, inviscid

electricity is conducted

the flowing plasma is

Just recently, Vitello, et.al. [ref. 18] described a two-

dimensional time-dependent numerical fluid code FLOW

simulating ion extraction from a plasma. The electrons were

assumed to be in equilibrium but no approximation was used for

the ions. The fluid equations were solved for the ions using

finite differences through the entire flow region. This

approach closely resembles the present one, but the

application and flow geometry differs.

Ionospheric Aerodynamics

Ionospheric aerodynamics is concerned with the effects

that the presence of an artificial satellite has on the

ambient space plasma. Although a spacecraft is in essence a
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equation.

electrons,
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probe, the emphasis is on the behavior of the disturbed plasma

flow field around the body, and not on determining plasma

properties.

The set of equations which govern the continuum flow of

a plasma over or around a satellite with electric body forces

present consist of conservation equations for charge, mass,

and energy, equations of state and Poisson's

The plasma is treated as an interacting mixture of

positive ions, and neutral particles. Multiple

sets of continuum equations must be solved for each species,

with interaction terms present in each [ref. i]. Typically

there are several assumptions made about the interaction which

simplify the system of equations.

First, the satellite velocity is intermediate between the

ion thermal speed and the electron thermal speed. This

simplifies the treatment of the electrons. The electrons can

be considered to be in local thermodynamic equilibrium. For

the case of highly negative surface potentials (l_l_kTc/e)

under steady-state conditions, this allows the use of the

Boltzmann factor in determining the electron density as a

function of electric potential. The Boltzmann factor provides

all the necessary information about the electrons.

The momentum transfer to and from different species is

considered for ionospheric conditions to be dominated by the

external electrostatic body force and pressure force [ref. I].

If desired, transfer of momentum by discrete collisions can be

expressed by an interaction term which can take on various
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functional forms dependent on relative velocities, masses,

etc.. To simplify the analysis further, the plasma is assumed

'collisionless' in the sense that the momentum transfer

through discrete collisions is negligible [ref. 19]. The

interaction term is often dropped from the analysis.

Since the velocity of the ions is much less than that of

the electrons, the cold-ion approximation is often employed.

As a result, the ions make negligible contribution to the

pressure and interaction terms in the momentum equation

[ref. 4]. The trajectories of the ions are therefore

identified with macroscopic streamlines and the continuity and

momentum equations represent 'free-stream' ions [ref. 20].

The energy equation for ions is no longer needed.

After applying the above assumptions, the starting point

of most past studies employing the continuum fluid approach

are the following equations:

ion continuity

ion momentum

_n__ia ÷V-(niv_)=0 (2.8)
at

nimi d_ =-Vp+ eniZ

electrostatic potential

(2.9)

z:-v_ (2.1o)



Poisson's equation
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equation of state

Boltzmann factor

V.E =--e [ni-n e] (2.11)
e o

--d-d(pn_ _)=0 (2.12)
dt

by

(2 13)
ne=_. e kTe

Another important parameter is the Debye length defined

iD= (e°kYe) I/2 (2.14)
e 2n.

The Debye length defines an order of magnitude distance in

which electrostatic fields are shielded from the bulk of a

plasma.

The bulk of the literature in this area is from the late

50's to the early 70's. Due to the complexity of the

interaction, it was impossible for computers of the time to

solve the general system of equations in a reasonable amount

of time. In order to make the problem solvable, regions where

different physical mechanisms dominated were postulated, and

the equations simplified based on those assumptions.

Lam and Greenblatt [ref. 21] considered the flow of a

collisionless plasma about a highly negatively biased cone

with the characteristic body length P_ much greater than the
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Debye length. The flow field was divided into a quasi-neutral

(ni=n_) and sheath region (ni>n_). Since Ro>> AD, the sheath was

assumed to be very thin, and could be approximated by the body

surface. This was used to uncouple the sheath from the

solution of the quasi-neutral region except at their common

boundary. Lam and Greenblatt showed that under these

conditions in the quasi-neutral region the ionic velocity was

irrotational. A velocity potential can thus be defined and a

potential equation derived which is analogous to the potential

equation for conventional isothermal compressible flow with

the ratio of the kinetic energy of the ions to the thermal

energy of the electrons playing the role of the square of the

Mach number [ref. 22]. Whether this parameter was greater or

less than one determined the characteristics of the flow. If

the flow is supersonic, there will be no upstream signal

propagation.

The technique used by Lam and Greenblatt was to simplify

the equations by making further assumptions about the ionic

density. In the quasi-neutral region, Poisson's equation no

longer needed to be solved, which allowed the definition of a

velocity potential. Various other approximations have been

used for the ionic density in the literature.

For example, Hohl and Wood [ref. 23] studied the

processes that are involved in the electric drag forces on a

large spherical satellite at its floating potential. The

floating potential of a sphere is only slightly negative due

to the greater electron thermal velocity. For such
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potentials, the ion number density in the sheath was

approximated to the first order by Hohl and Wood to be

constant and equal to that outside the sheath. The electron

number density was determined using a modified Boltzmann

distribution. Hohl and Wood used a computational method

similar to that of Davis and Harris [ref. 24] which involved

iterating between tracking ion trajectories to find the ionic

density and solving Poisson's equation for the potential.

Several of the sources referenced thus far in this

section [ref. i- 4, 20] are general review articles on

ionospheric aerodynamics. The article by Stone [ref. 4]

attempts to integrate information existing at that time into

a parametric treatment of the problem. The different possible

formulations (i.e. continuum and kinetic) are outlined quite

well, and a review of the results from a range of studies is

given.

More recently, Wang and Hastings [ref. 25] studied the

dynamic coupling of large highly negatively biased flat plates

with a flowing plasma on the ion-plasma-time scale. A

particle simulation method was used to obtain the density

profile of the ions for various time-dependent boundary

conditions. Steady state results were also presented.



CHAPTERI I I

APPROACH AND FORMULATION

The interaction of two parallel flat plates biased to

different electric potentials in close proximity immersed in

a flowing plasma is studied numerically. The following

assumptions are based on the characteristics of the

interaction between an orbiting spacecraft and the low earth

orbit plasma.

Assumptions

I). The speed of the spacecraft is intermediate between

the thermal velocities of the ions and electrons.

vr(u.(vr. (3.1)

The electrons are therefore assumed to be in equilibrium,

and are unaffected by the motion of the spacecraft. The

electron number density as a function of the local

potential is obtained from the solution of the

collisionless BQ!tzmann equation known as the Boltzmann

factor

ne=n.e k_ (3.2)

19
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The Boltzmann factor provides all information needed

about the electronic behavior. The ions are considered

to have negligible thermal motion; an energy equation for

the ions is therefore not necessary.

2). The speed of the oncoming ions is assumed to be great

enough to satisfy Bohm's criteria

vTaup=[ kTe (3.3)
m i

An electric sheath thus forms around imposed electric

potentials on the flat plates causing the potential to be

shielded from the bulk of the plasma on the order of a

Debye length away from the surface. Boundary conditions

can thus be established at infinity as those in an

undisturbed plasma; V=u_, n_ni=n ®. The Debye length is

defined as

).D=(e°kYe) I/2 (3.4)
e2/'_,.

The Debye length is typically on the order of a

centimeter for the LEO plasma

3). The plates are assumed to be perfect absorbers of

incident particles, are of infinitesimal thickness, with

surface potential _p. All ions reaching the plate are

assumed neutralized and do not contribute to the electric

potential on the plate unless the plate is specified as
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4). The plasma is only slightly ionized. The flow field

of the neutral particles is therefore not affected by the

presence of the charged particles, and can be determined

by the usual means.

5). The plasma is assumed collisionless in the sense that

the charged particles only interact through their

contribution to the electric potential. The gradient in

the electric potential determines the body forces.

6). The interaction is modeled in steady state. When

studying the application of the docking of two

spacecraft, the problem is modeled in a quasi-static

manner which assumes that the electric sheath structure

of the two plates establishes itself on a time scale much

faster than the movement of the plates.

Governinq Equations

Based on the assumptions outlined above, the system of

equations governing the ions is a subset of the general

Navier-Stokes equations with the addition of electric body

force terms. Poisson's equation governs the electric

potential, and the Boltzmann factor provides the electronic

number density.

In non-dimensional form, the equations for steady-state,
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compressible, laminar flow are

Ion continuity

@(niu) @ (niv)
+ -0

ax ay

Ion x-momentum

(3.5)

8u + 8u. 1 o_
u-_ v-_ -M_ ax

(3.6)

Ion y-momentum

av av 1
(3.7)

Poisson's

Boltzmann factor

a2--_+ 02---_-_-n-n

ax 2 ,gy2 _
(3.8)

Ambient Mach number

(3.9)

U a

Mo-

I .kTe
m i

(3.zo)

The velocity components and the density of the ions and

electrons were normalized by the free-stream values u® and n®

respectively. The spatial components were normalized by the

Debye length, and the potential by the thermal energy of the

electrons.

The ambient Mach number is defined as the ratio of the
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freestream or orbital velocity to the ion sound speed. Both

the orbital velocity and the ion sound speed are functions of

the orbital altitude. As one increases in altitude, the

orbital velocity and the ion mass decrease while the electron

temperature increases. The ion sound speed increases more

rapidly than the orbital velocity decreases resulting in a

decrease in the ambient Mach number with increasing altitude.

Computational Approach

The equations are solved using finite-differences with

the frame of reference fixed on the plates. A staggered and

variable grid is employed. A separate grid is defined for

each velocity component and one for the potential and density.

The velocity components are located midway between the

potential and density points. The potential gradient, which

determines the body force on the ions, thus becomes the

'natural driving force' for the velocity components [ref. 26].

A variable grid was employed in order to cluster grids in

regions of expected large flow gradients; the leading and

downstream edges of the plates, and along the surfaces of the

plates. Simple geometric clustering equations were used. The

governing equations were not transformed in terms of the

clustering equations however. Instead, the governing

equations are cast into a general, variable-grid finite-

difference form [ref. 27]. Figure (2) shows the variable grid

structure used for a two-plate geometry. The plasma flows

from left to right in the x-direction.
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Figure 2. Variable grid structure for a two-plate geometry
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Poisson's equation is elliptic in nature, and is

differenced using a five-point formula. The equation is made

linear by using the potential determined in the previous

iteration in the Boltzmann factor. The resulting system of

linear equations is solved using the Thomas Algorithm with

successive over-relaxation (SOR) by columns.

An explicit second-order upwind differencing scheme is

used for the u velocity, and an explicit first-order upwind

scheme is used for the v velocity. A second order scheme was

not chosen for the v velocity because of the numerous regions

of reversed flow expected in the cross-flow direction for the

problems studied. No flow-reversal is expected in the x-

direction. The equations are made linear by either lagging or

extrapolating the coefficients of the convective terms. The

potential gradients in the momentum equations are forward

differenced.

The continuity equation is solved using a flux-balance

method. A balance is applied to each control volume centered

on the density grid points. The density which satisfies the

continuity equation given the velocities at each face of the

control volume is then determined.

The variable-grid forms of the upwind differencing

schemes used are not conservative for a general case. The

extent of error thereby introduced is determined by comparing

the influx of momentum at the upstream boundary to the outflux

of momentum at the plates and the downstream boundary. It was

found that the difference was less than 5% for all case
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studies.

To obtain a steady-state solution, it is necessary to

iterate between the solution of Poisson's equation and the

continuum equations. Poisson's equation is solved first

assuming a constant ionic and electronic number density

throughout the computational space. The velocity components

are then determined from the solution of the momentum

equations. Finally, the continuity equation is solved to

determine the ionic density which is used in Poisson's

equation to adjust the potential field. This procedure is

continued until there is no further change in the flow field.

It was found that a complete solution of Poisson's equation at

each iteration was not necessary for the solution to converge.

Twenty Poisson cycles at each iteration was found to be

sufficient.

The inverse of the Mach number squared is present in both

momentum equations and determines the extent of influence of

the potential field. By decreasing the value of the Mach

number, large gradients in the potential produce corresponding

large changes in the velocity components which can result in

the solution numerically diverging. For cases where the

coefficient is relatively large, the value is increased in

steps between iterations. Since only a steady-state solution

is desired, this procedure is valid. If a time-dependent

solution where desired, very small time-steps and/or grid

spacing would be required instead.

Grid spacing is in terms of the Debye length kD. In the
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variable grid regions, spacings on the order of .001 k D are

used to begin with. In the constant grid regions, spacings on

the order of .i AD are utilized. Grid spacings as large as

.25 kD were used successfully except for oscillations near the

boundaries which is a property of the second-order upwind

differencing scheme chosen.

Boundar_Conditions

For Poisson's equation, boundary conditions must be

defined on all four boundaries. The upstream and parallel

boundaries to the flow are set far enough away from the plates

that the imposed electric potentials are completely shielded

prior to their position (i.e. ¢=0). The downstream boundary is

approximated by

(xB-x _2)
CB=@B-2+ <XB_I_X _2)

(3.11)

which maintains the gradient of the potential at that point.

The potential on the surface of a plate is a constant given by

Cp, but may vary between quasi-static states if the surface is

specified as 'floating'.

For the velocity components and density, the upstream and

parallel boundaries are defined as free-stream; ni=nc=n=, v=0,

u=u=. The velocity components on the downstream boundary are

extrapolated from the two previous grid points.

A 'slip' boundary condition is prescribed for the x-

component of the velocity along the surfaces of the plates.
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For the y-component, a plate surface represents a sink which

absorbs all perpendicularly incident ions. Since an upwind

scheme was employed, the differencing progresses in the

direction of the flow where the flow properties of each region

are determined exclusively by those which are upstream or

•upwind'. The upwind direction in this case is either in the

plus or minus y-direction depending on the direction of the

acceleration by the electric body forces. Since viscosity is

ignored in the present study, the velocity perpendicular to

the plate does not tend toward zero as one approaches the

plate. On the contrary, the accelerating force is greatest in

this region. The ions are not affected by the 'physical'

presence of the plate until they are actually absorbed; there

is no upwind transfer of information about the velocity,

except by the dependence of the potential on the gradients of

the velocity components through the continuity equation.

Likewise, since the plates represent a sink, no flow can

originate on the surface and move away. A situation can occur

where one of the plates is at a much larger negative potential

than the other, and will draw the ions away from the more

positive plate. In this case, a zero y-component velocity

boundary condition is prescribed on the plate surface.

For the situation just described, it is possible that

regions of zero density may develop as momentum flows out of

a region and is not replaced. This would violate the

assumption of a continuum. In the present study, these

situations are avoided.
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Thus far there has been little mention of what happens in

the wake of a spacecraft. It is expected that if one were

stationary with the plasma, that after a spacecraft passes the

plasma would tend to return to an undisturbed state. The

distance behind a spacecraft at which this occurs is difficult

to determine [ref. 4]. In the wake, properties such as

temperature and viscosity that were neglected in the region of

high potential near the spacecraft now become important. The

present study neglects such effects and is therefore

incapable of providing a correct solution in this region. The

proper way to specify the downstream boundary using the

present method therefore becomes an issue especially in the

case of the electric potential.

Take for example the problem of a negatively charged

single plate parallel to an oncoming plasma flow. The ions

are focused toward the axis of the plate on both sides. If

the plate were semi-infinite, all ions entering the sheath

would eventually be absorbed by the plate. If, however, the

plate is of finite length, some of the focused ions will

overshoot the plate causing a buildup of density behind the

plate on its axis of symmetry. The buildup of positive ions

can become large enough to form regions of positive potential.

The plasma begins to oscillate, and a very complicated

structure is produced. Even the most general continuum

approach including temperature effects and viscous dissipation

would not be totally sufficient because the focusing of the

ions causes important behavior not represented by the average
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[ref. 18].

Nevertheless, the solution was carried out in the wake

region using the present method to determine the effect of the

placement of the downstream boundary. A complicated but

structured flow pattern resulted with alternating regions of

positive and negative potential. It was found that with the

boundary condition of a continuous potential gradient, a

distance of ten Debye lengths downstream from the back edge of

the plates was sufficient to produce grid-independent results.



CHAPTER IV

RESULTS AND DISCUSSION

Sinqle Flat Plate

The plasma flow field about a parallel flat plate can

naturally be divided into regions where different physical

mechanisms dominate. This technique was used by past

investigators to make the problem solvable analytically. For

the present application, the structure of the flow field is

determined by a balance between strong convective effects in

the flow direction and strong electric effects in the vertical

direction. A better understanding of the processes involved

is gained by analyzing the flow in more detail. Figures 3

through 8 show a flow field about a single semi-infinite flat

plate for a typical set of parameters characteristic of LEO.

If there were no flow, the sheath would have a fairly

constant dimension across the plate except near the very

edges. When a flow is imposed, the sheath is compressed near

the leading edge in the direction of the flow, and the

distortion can extend many sheath thicknesses downstream.

This region is labeled as the 'leading edge' in Figure 3. The

31
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Figure 3. u velocity contours for a single semi-infinite flat

plate: u==8780 m/s, T_=0.2 eV, _p=-20, _=16 amu

Contour values: u/u== 1.0001, 1.01, 1.05, i.I, 1.15

from the freestream toward the plate
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Figure 4. v velocity contours for a single semi-infinite flat

plate: u®=8780 m/s, To=0.2 eV, #p=-20, _=16 amu

Contour values: v/u== ±.01, ±.I, ±.3, ±.5, positive

values below, negative values above, from the

freestream toward the plate
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Figure 5. Ionic density contours for a single semi-infinite

flat plate: u_=8780 m/s, T==0.2 eV, _p=-20, mi=16 ainu

Contour values: ni/n®= .99, .7, .368, .2, .I, from
the freestream toward the plate
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Figure 6. Electrostatic potential contours for a single semi-

infinite flat plate: u==8780 m/s, T==0.2 eV, _p=-20,
mi=16 amu

Contour values: _= -.i, -i, -5, -i0, -15, from the

freestream toward the plate
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Figure 7. Streamlines superimposed on electric potential

contours for a single semi-infinite flat plate:

u®=8780 m/s, T==0.2 eV, ¢p=-20, _=16 amu
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Figure 8. Normalized current density J/(en®u_)to a single

semi-infinite flat plate: u®=8780 m/s, To=0.2 eV,

¢p=-20, _=16 amu
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distortion is caused by the streaming source of relatively

high ion density of large mass available near the edge. From

Poisson's equation, an increase in density compared to the

non-flowing case causes a decrease in the sheath dimension.

The plate, however, acts as a sink absorbing all

perpendicularly incident ions. As the perpendicular velocity

increases downstream due to acceleration by the electric

field, there is a drop in density as it is absorbed by the

plate, and the sheath expands accordingly. Expansion

continues further downstream to such an extent that the

current passing into the sheath from the freestream is equal

to that which is absorbed by the plate. When this point is

reached, there are no further changes in velocity or potential

in the flow direction, and the flow becomes essentially one-

dimensional. This region is labeled as 'fully developed.'

Certain flow patterns shown by the figures are worth

noting. Figure 3 shows that as one moves downstream from the

leading edge, the velocity in the flow direction near the

plate decreases which would imply a decelerating force. This,

however, is not the case. As one moves downstream in the

leading edge region, the vertical velocity is increasing, and

convects the slower free-stream parallel flow toward the

plate. The result is an overall decrease in the parallel flow

velocity. In the region where the vertical convection is

taking place, the current density to the plate, which is the

product of the density and the vertical velocity, reaches a

maximum and then decreases toward a constant value in the
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fully-developed region. Figure 8 shows that the maximum

current density occurs approximately 6.3 Debye lengths in from

the leading edge for the flow parameters chosen.

From Figures 3 and 4, it is evident that the ions are

accelerated prior to the leading edge by the electrostatic

field even though the flow is hypersonic. It should be noted

that electromagnetic disturbances travel at the speed of

light, and their influence is not limited by speed of sound

considerations. Poisson's equation reflects this by being

elliptic in nature.

The above results are compared with theoretical and

published computational models below.

A na!vtica! Comparison

For the LEO parameters used above, the Debye length is

typically much smaller than spacecraft dimensions. The sheath

is then concentrated in a thin layer surrounding the

spacecraft. In this situation, the space charge becomes

important in determining the characteristics of the problem,

and the one-dimensional current flow between the sheath edge

and a spacecraft surface is given by the space-charge-limited

Child-Langmuir law [ref. 5]

3

• 4e o

(4.1)

where s is the distance from the surface to the edge of the

sheath.
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The approximation of a definite

restrictions on the solution of the

sheath edge imposes

governing equations.

Mathematically, the restriction states that vi'Z(kT_/_) le which

is known as the Bohm criteria. Physically it requires that in

order for a sheath to form around a negatively biased surface,

the ions must stream into the sheath boundary with a velocity

equal to or greater than (kT_/_) le.

units of Debye length is given by

The sheath dimension s in

5
-- 3 1

1 2 4 q_ ) _(__>_
(4.2)

The factor of 1/0.6 occurs from the conversion of the Debye

length in terms of sheath parameters, to the Debye length in

terms of free stream parameters (i.e. ni'= n_e1). If it is

assumed that the Bohm criteria is just satisfied ( i.e.

u_/v i' = i), then the ion current density to the plate in the

fully developed region is found to be independent of the plate

potential [ref. 25]

j2=0.37 en.up
(4.3)

These analytical equations can be obtained from both

kinetic theory and a hydrodynamic formulation. Wang and

Hastings [ref. 25] provide a detailed derivation using the

hydrodynamic formulation, and applied the results to the case

of a finite-flat plate parallel to a hypersonic plasma flow.

The analytical equations are applicable only in the fully

developed steady-state sheath far downstream from the leading
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edge ratio assuming ualv i' = i as

1.3Mo14_p: 3/4
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Wang and Hastings quantified a leading

(4.4)

and stated that the analytical treatment is sufficient only

for plates with _<<i.

The flow field presented in Figures 3-8 satisfies the

leading edge ratio given by Equation (4.4). Table 1 shows the

comparison between analytically predicted values of current

density and sheath parameters to those calculated at a point

above the plate in the flow field where the Bohm criteria is

just satisfied. To test the current density's independence of

surface potential, the same problem was run for a surface

potential of _p=-10 as well. These results are given in Table

2.

The above analytical approach assumes that the ions are

cold. Other theories have been proposed which make different

approximations for the ions. A description of a couple of

theories and the results they give will help bound the effects

introduced in assuming a cold ion distribution [ref. 28].

If the ions are assumed to be in a state of thermodynamic

equilibrium, then a distribution function for the ions can be

defined much like the Boltzmann factor for the electrons. In

order for the ions to be in thermodynamic equilibrium at all

points in space for an attracting potential, the surface must

be reflecting. As a result, the ion density adjacent to the
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Table I. Comparison between analytical and computed

electric sheath parameters for a single semi-

infinite flat plate: u®=8780 m/s, T_=0.2 eV,

#p=-20, _=16 amu

Analytical Computed

Sheath Dimension 12.3 AD 14.3 kD

Sheath Edge Potential -.2 V -.22 V

Sheath Edge Density .367 n o .42 n o
m

Normalized Plate .37 .48

Current Density

Table II. Comparison between analytical and computed

electric sheath parameters for a single semi-

infinite flat plate: u®=8780 m/s, To=0.2 eV,

_p=-10, _=16 amu

Analytical Computed

Sheath Dimension 7.3 AD i0.3 _D

Sheath Edge Potential -.2 V -.21 V

Sheath Edge Density .367 n o .41 n o

Normalized Plate .37 .48

Current Density
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surface is much greater than the free-stream value, and the

potential drops off rapidly away from the surface.

A perfectly reflecting wall is not very realistic

especially when the surface is metallic. Another approach is

to assume that the ion distribution is unaffected by the

potential and takes on the free-stream value at all points.

In this case, the potential drops off less rapidly than for a

reflecting wall.

For an absorbing surface, the adjacent density is less

than the free-stream value, and the sheath expands farther

than in the previous two cases. If the ions also have a

finite temperature, electrical currents can flow even without

the presence of an accelerating electric field. The result is

an increase of current to a surface and a smaller sheath

dimension than in the case of cold ions. The overall effect,

however, is small [ref. 25]. By assuming cold ions, the

effects of the imposed electric potentials will be only

slightly overestimated in the region near the plate.

Floatinq Potential

The floating potential of a spacecraft is defined as that

electric potential required to balance the ion and electron

currents to the spacecraft, that is no net current. This is

of course in the absence of any imposed potentials on the

spacecraft surfaces due to its operation (i.e. solar power

arrays). An estimate of the floating potential for quiescent

conditions (i.e. no imposed plasma flow) can be obtained by
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setting relations for the ion and electron current equal to

each other [ref. 5].

1

1 kTe ) _ (4.5)
Ji=-2n'( =---7

conditions.

plate is

equations.

i ___! (4.6)
• 1 2kTe) _e kr,

The electron flux relation is the random electron thermal

current times the Boltzmann factor, and the ion flux relation

is for monoenergetic ions. For oxygen ions, the above

relation specifies _f to be about 4.9 times the thermal energy

of the electrons negative relative to space for quiescent

For the present study, the ion current to the

obtained from the solution of the governing

ji=_ni _ (4.7)
P

where the summation is the flux over the plate. Equating

equation (4.6) for the electron flux and equation (4.7), the

only unknown is the floating potential which is solved for.

The floating potential was determined for a single finite

flat plate parallel to a flowing plasma characteristic of LEO

at different altitudes [ref. 2]. The electric potential on

the plate was iterated until the resulting ion current matched

the thermal electron current at that potential. The results

are given in Table 3.
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Table III. Floating potential calculation as a function

of orbital altitude for a single finite flat plate

Altitude

[km]

200

Space-

craft

Velocity

[m/s]

7800

Ion

Mass

[amu]

18

Electron

Temp.

levi

.172

Calculated

Floating

Potential

iv]

-.74

# Times

Electron

Temp

4.3

300 7700 16 .1895 -.8 4.2

400 7700 15 .207 -.87 4.2

500 7600 15 .224 -.95 4.2

600 7600 15 .233 -.99 4.2

700 7500 14 .25 -1.05 4.2

800 7500 13 .258 -1.09 4.2

900 7400 i0 .267 -i.I 4.1

I000 7400 7 .276 -i.ii 4.0
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Computational Comparison

The flow field described in figures 3 through 8 was

compared with results given by Wang and Hastings [ref. 25].

Identical approximations are made in the Wang, Hastings paper,

but a particle-in-cell model (PIC) which utilizes a

microscopic rather than a continuum description was used. The

comparison resulted in nearly identical potential field lines.

Differences did occur in the region within a few Debye lengths

of the leading edge. The present study predicts a maximum

current density 6.3 Debye lengths from the leading edge while

the Wang and Hastings paper predicted a maximum at the very

tip. It is expected that the maximum current will be at some

distance down from the leading edge. The flow field in this

region was examined earlier in the chapter, and the reason

stems from an increasing cross-flow velocity as one moves down

the plate.

Two Parallel Plates

Minimum Separation Distance

Two studies were conducted involving the electrical

interaction of two parallel plates through a flowing plasma.

The first describes the interaction of two equally biased

plates. The minimum separation distance at which the current

collected by each plate is unaffected by the presence of the

other is determined as a function of the applied potential to
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the plates. This information can be used, for example, by

space shuttle experimenters who need to know if the plasma

flow field around their experiment will be affected by the

electric potential of the shuttle.

The interaction of two equally biased parallel plates is

a function of the separation between the plates, the potential

applied to the plates, the properties of the plasma including

the speed of the oncoming plasma flow, and the length of the

plates. In the present study, the potential applied to the

plates was allowed to vary for a constant plate length of five

Debye lengths and plasma properties characteristic of a 400

kilometer altitude (see Table 3).

If the plates are separated by a large distance, the

current collected by both sides of either plate will be equal

and essentially undisturbed by the presence of the other

plate. As the plates are moved closer, the rate at which ions

are collected by the inside surfaces of the plates approaches

that at which they are supplied to the inner region by the

oncoming plasma flow. The density between the plates

decreases relative to the large separation case as a result,

causing a decrease in the current to the inside surfaces. The

closer the plates are together, the greater the decrease in

density between them. The separation distance at which the

current to the inside surface of either plate drops by 5% and

20% relative to the large separation case was determined for

normalized voltages ranging from -i to -i00. For the plasma

properties chosen, this corresponds to an electric bias



45

ranging from -.2 to -20 volts. Figure 9 plots the minimum

separation distance for a five and twenty percent drop in

current in units of Debye length as a function of normalized

potential.

A more detailed representation of the interaction is

presented in figures I0 through 25 which show the development

of the flow field as two plates at a -50 normalized potential

approach one another. The figures are in groups of four

showing u, v, p and # contours for plate separations of 29,

19, 14 and 9 Debye lengths. The figures are plotted with

identical scaling in terms of Debye length to emphasize the

effects of separation distance.

It is evident from figures i0 through 13 that for a large

separation, the flow field about each plate is undisturbed by

the presence of the other. For a small separation (i.e.

figures 22 through 25) however, there is a dramatic shift in

the flow field in the region between the plates. Comparing

figures 12 and 24, it is seen that the density decreases in

the inner region as ions are collected by the plates at a rate

faster than they are supplied by the oncoming plasma flow. As

a result, there is a decrease in current to the inside

surfaces. Figure 26 shows this by comparing the normalized

current density along the inside surface of the plates to that

of a single plate at a -50 normalized potential immersed in an

identical plasma flow. The current to the outside surface of

the plates remains nearly unchanged compared to the single

plate result for all separation distances.
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Figure 9. Minimum interaction separation distance between two

equally biased flat plates as a function of applied

potential: u==7800 m/s, T==0.2 eV, _=SkD, _=16 amu
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Figure I0. u velocity contours for two equally biased flat

plates: d_=29AD, _=Sk D, #p=-50, U==7800 m/s,
To=0.2 eV, _=16 ainu

Contour values: u/u== 1.005, 1.05, I.i, 1.3, 1.5

from the freestream toward the plates

Figure ii. v velocity contours for two equally biased flat

plates: d_=29XD, _=5kD, _p=-50, u==7800 m/s,
To=0.2 eV, _=16 amu

Contour values: v/u== ±.01, ±.i, ±.3, ±.5, ±i

positive values below the plates, negative values
above from the freestream toward the plates
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Figure 12. Ionic density contours for two equally biased flat

plates: d_=29kD, _=5kD, _p=-50, U==7800 m/s,
T_=0.2 eV, _=16 amu

Contour values: ni/n== .95, .75, .5 from the

freestream toward the plates

Figure 13. Electrostatic potential contours for two equally

biased flat plates: d_=29AD, _=SAD, _p=-50,
U==7800 m/s, To=0.2 eV, _=16 amu

Contour values: _= -.i, -I, -i0, -20, -30 from the

freestream toward the plates
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Figure 14. u velocity contours for two equally biased flat

plates: d_=19XD, _=SXD, #p=-50, U®=7800 m/s,
T==0.2 eV, _=16 ainu

Contour values: u/u== 1.005, 1.05, i.I, 1.3, 1.5

from the freestream toward the plates

Figure 15. v velocity contours for two equally biased flat

plates: d_=19XD, _=5XD, _p=-50, U==7800 m/s,
T_=0.2 eV, _=16 amu

Contour values: v/u== ±.01, ±.i, ±.3, ±.5, ±i

positive values below the plates, negative values

above from the freestream toward the plates
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Figure 16. Ionic density contours for two equally biased flat

plates: d_=19Ao, _=5AD, _p=-50, u==7800 m/s,
Te=0.2 eV, _=16 ainu

Contour values: _/n®= .95, .75, .5 from the

freestream toward the plates

Figure 17. Electrostatic potential contours for two equally

biased flat plates: d_=19kD, _=5kD , _-50,
u==7800 m/s, To=0.2 eV, _=16 amu

Contour values: _= -.I, -i, -I0, -20, -30 from the
freestream toward the plates
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Figure 18. u velocity contours for two equally biased flat

plates: d_=14kD, _=5XD, _p=-50, U==7800 m/s,

To=0.2 eV, z%=16 ainu

Contour values: u/u== 1.005, 1.05, i.i, 1.3, 1.5

from the freestream toward the plates

Figure 19. v velocity contours for two equally biased flat

plates: d_=I4AD, _=5k D, _p=-50, U==7800 m/s,

Te=0.2 eV, _=16 amu

Contour values: v/u== ±.01, ±.I, ±.3, ±.5, ±I

positive values below the plates, negative values
above from the freestream toward the plates
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Figure 20. Ionic density contours for two equally biased flat

plates: d_=14)_ D, _=5)kD, _p=--50, U==7800 m/s,

T¢=0.2 eV, z%=16 amu

Contour values: ni/n== .95, .75, .5, .45 from the

freestream toward the plates

Figure 21. Electrostatic potential contours for two equally

biased flat plates: d_=14k D, _=5k D, _p=-50,

u®=7800 m/s, T_=0.2 eV, _=16 amu

Contour values: #= -.i, -I, -i0, -20, -30 from the

freestream toward the plates
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Figure 22. u velocity contours for two equally biased flat

plates: d_=9_D, _=5kD, _=-50, u==7800 m/s,
T¢=0.2 eV, _=16 ainu

Contour values: u/u== 1.005, 1.05, I.I, 1.3, 1.5

from the freestream toward the plates

Figure 23. v velocity contours for two equally biased flat

plates: d_=9_m, _=5AD, _=-50, u==7800 m/s,
T==0.2 eV, _=16 amu

Contour values: v/u== ±.01, ±.i, ±.3, ±.5, ±i

positive values below the plates, negative values

above from the freestream toward the plates
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Figure 24. Ionic density contours for two equally biased flat

plates: d_=9_ D, d_=5kD, _p=-50, u_=7800 m/s,

Te=0.2 eV, mi=16 amu

Contour values: nt/n.= .95, .75, .5, .45 from the

freestream toward the plates

Figure 25. Electrostatic potential contours for two equally

biased flat plates: d_=9k D, _=5kD, _p=-50,

u®=7800 m/s, Te=0.2 eV, _=16 amu

Contour values: _= -.i, -i, -i0, -20, -30 from the

freestream toward the plates
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u®=7800 m/s, T==0.2 eV, _=16 amu
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The buildup of density downstream on the axes of the

plates due to the focusing of the ions was purposely excluded

from the figures showing ionic density contours. Since

temperature and pressure were neglected, the only mechanism to

dissipate a large density buildup is the electric field force.

Within the region plotted in the figures, the buildup is not

large enough to affect the potential field appreciably; it is

not large enough to cause the flow toward the axes to reverse

direction. The buildup is very abrupt until enough ions can

be accumulated to produce a positive potential and reverse the

flow of ions away from the axes. Because the buildup is so

abrupt, all the density contour values are present within a

few grid points on the axes of the plates but were left out of

the figures showing ionic density contours for clarity.

Scaling rules which apply to this problem are determined

by considering the form of the governing equations. The

problem will depend on the ratios of Debye length to plate

length, electric potential to electron temperature and the

Mach number. These parameters and their effects on the

characteristics of the interaction will be discussed briefly.

The longer the plates, the greater the decrease in the

density between them for a constant separation. Therefore, it

is expected that the curves in figure 9 would shift toward

greater separation distances for increasing plate length.

The electron temperature shows up in three places.

First, the dependence of the interaction on the Debye length,

which is a function of the electron temperature defined by
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equation (3.4), was addressed in the previous paragraph. It

should be noted that the Debye length is also a function of

the neutral density which does not show up explicitly in the

normalized governing equations. Therefore, the ratio of the

Debye length to plate length can be held constant by holding

the ratio of the electron temperature to neutral density

constant.

In the momentum equations, the Mach number, which is the

ratio of the freestream velocity and the ion sound speed,

determines the extent of influence of the potential gradient

on the ion velocity. Equation (3.3) defines the ion sound

speed in terms of the electron temperature. Increasing the

Mach number decreases the effect of the potential field

causing a spatial compression of the potential field lines.

The separation curves in figure 9 would shift toward smaller

distances for increasing Mach number.

Finally, the electric potential was normalized by the

electron temperature. This procedure was partially

responsible for the formation of the Mach number in the

momentum equations. The dependence on the electron

temperature however, is not fully addressed by the Mach

number. In order to have similar flows, the terms on the

right hand side of the momentum and Poisson's equations must

be the same. This requires that both the ratio of the

electric potential to the electron temperature and the Mach

number be similar. For example, suppose that two flow

problems have the same Mach number but different normalized
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potential. This could be accomplished by changing the

electron temperature but holding the Mach number constant by

altering either the oncoming flow speed or the ion mass to

compensate. Although the Mach number is the same the flows

will not be. It is expected that increasing the ratio of

electric potential to electron temperature will in general

cause the separation curve to shift toward greater distances.

Spacecraft Docking

The second case study conducted simulates the docking of

two spacecraft in orbit. Two parallel plates of unequal

potential are moved toward one another in a quasi-static

manner. The top plate is held at a relatively large constant

negative potential while the other is allowed to "float' in

the resulting potential field. The floating condition is

determined by a balance of current to the plate. This problem

is applicable to the docking of the Space Shuttle with the

proposed Space Station Freedom. The space station will have

a relatively large constant negative potential due to solar

array operation. The shuttle has no external power system

which interacts with the space environment and will attain a

potential determined mainly by a balance of ambient current to

its surfaces. As the two approach however, the potential of

the shuttle will adjust so that upon contact the two will form

a single system. Results are presented below which describe

the adjustment procedure of the floating plate for a plate

length of five Debye lengths and plasma properties
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characteristic of a 400 kilometer altitude (see Table 3).

Figures 27 through 38 show the development of the flow

field as the two plates approach one another. The top plate

is held constant at -50 normalized potential and the bottom

plate is floating. The figures are in groups of four showing

u, v, p, and # contours for plate separations of 24, 9, and 4

Debye lengths.

For large separations, the potential of the floating

plate is unaffected by the presence of the top plate and takes

on a potential characteristic of a balance between ambient

ionic and electronic currents. As the two plates become

closer, two main adjustments occur. First, the potential

field of the top plate begins to dominate the inner region,

drawing nearly all the plasma supplied to the region to its

inner surface and away from the bottom plate. As a result,

the current to the inner surface of the bottom plate

decreases, and a very small separation distances goes to zero.

Referring to equations (4.6) and (4.7) used for the floating

potential calculation it is seen that a decrease in the ionic

current must be compensated by a more negative floating

potential. Secondly, the more negative potential field

created by the top plate envelopes the bottom plate for small

separation distances. The current to the outer surface of the

bottom plate increases due to an increase in the perpendicular

velocity caused by the larger potential gradient. Again

referring to a current balance calculation, an increase in

ionic current is compensated by a less negative floating
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Figure 27. u velocity contours for the case of an electrically

floating bottom plate: d_=24_D, _=5kD, #p(_)=-50,

#f_)=-4.3, U==7800 m/s, Te=0.2 eV, _=16 amu

Contour values: u/u== 1.005, 1.01, 1.05, I.i, 1.2,

1.6 from the freestream toward the plates

Figure 28. v velocity contours for the case of an electrically

floating bottom plate: d_=24AD, _=5kD, _)=-50,

#r_)=-4.3, u==7800 m/s, T_=0.2 eV, _=16 amu

Contour values:v/u== ±.05, ±.i, ±.25, ±.5, ±.75

positive values below the plates, negative values
above from the freestream toward the plates
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Figure 29. Ionic density contours for the case of an

electrically floating bottom plate: d_=24kD,

_=5AD, _p(_)=-50, _f_)=-4.3, u.=7800 m/s,
To=0.2 eV, %=16 amu

Contour values: ni/n== .95, .7, .5 from the

freestream toward the plates
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Figure 30. Electric potential contours for the case of an

electrically floating bottom plate: d_=24kD,

_=5_D, _p(_)=-50, _f_)=-4.3, U==7800 m/s,

T¢=0.2 eV, _=16 amu

Contour values: #= -.01, -.I, -i, -4.3, -i0, -20,
from the freestream toward the plates
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Figure 31. u velocity contours for the case of an electrically

floating bottom plate: d_=9_D, _=5A D, _p(_)=-50,

#f_)=-4.6, u®=7800 m/s, T¢=0.2 eV, _=16 amu

Contour values: u/u== 1.005, 1.01, 1.05, I.i, 1.2,

1.6 from the freestream toward the plates
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Figure 32. v velocity contours for the case of an electrically

floating bottom plate: d_=9kD, _=5kD, _p(W)=-50,

_f0_)=-4.6, U==7800 m/s, To=0.2 eV, _=16 amu

Contour values:v/u== ±.05, ±.i, ±.25, ±.5, ±.75

positive values below the plates, negative values

above from the freestream toward the plates
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Figure 33. Ionic density contours for the case of an

electrically floating bottom plate: d_=9kD, d_=5AD,

#p(_)=-50, _f_)=-4.6, U==7800 m/s, T_=0.2 eV,

I%=i 6 amu

Contour values: ni/n®= .95, .7, .5 from the

freestream toward the plates
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Figure 34. Electric potential contours for the case of an

electrically floating bottom plate: d_=9kD,

_=5AD, #M_)=-50, _f_)=-4.6, U®=7800 re�s,
To=0.2 eV, _%=16 amu

Contour values: _= -.01, -.i, -i, -4.6, -i0, -20,

from the freestream toward the plates



66

60

50

Y/AD

4O

30

0
I ] I

15 20 25 30

x/kD

Figure 35. u velocity contours for the case of an electrically

floating bottom plate: d_=4AD, _=5kD, #p(_)=-50,

_)=-4.75, u,=7800 m/s, To=0.2 eV, I%=16 amu

Contour values: u/u== 1.005, 1.01, 1.05, I.i, 1.2,

1.6 from the freestream toward the plates
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Figure 36. v velocity contours for the case of an electrically

floating bottom plate: d_=4AD, _=SAD, #M_)=-50,

_f_)=-4.75, U==7800 m/s, To=0.2 eV, _=16 amu

Contour values:v/u== ±.05, ±.I, ±.25, ±.5, ±.75,

±i positive values below the plates, negative

values above from the freestream toward the plates
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Figure 37. Ionic density contours for the case of an

electrically floating bottom plate: d_=4kD,
_=5k D, _p(_)=-50, _f_)=-4.75, U==7800 m/s,

T==0.2 eV, _=16 amu

Contour values: ni/n== .95, .7, .5, .3, .l
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Figure 38. Electric potential contours for the case of an
electrically floating bottom plate: d_=4k D,

_=5kD, _p(_)=-50, _f_)=-4.75, u==7800 m/s,
T_0.2 eV, _=16 amu

Contour values: _= -.01, -.i, -i, -4.75, -i0, -20,

from the freestream toward the plates
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potential.

Figure 39 shows the negative floating potential of the

bottom plate in normalized units versus separation distance in

Debye lengths. At large separations, the floating potential

is approximately 4.3 times the electron temperature which is

characteristic of a flow about a solitary plate for the plasma

conditions chosen. Figures 27 through 30 show that the flow

field about the bottom plate is essentially unaffected by the

presence of the top plate for this separation.

At midrange separations, (i.e. 8 to 12 Debye lengths) the

potential field created by the top plate has not yet enveloped

the bottom plate, but still draws much of the plasma supplied

to the middle region to its inner surface. An overall

decrease in current to the bottom plate results causing its

floating potential to increase by approximately 10%. Figures

31 through 34 show the flow field about the pair of plates for

a 9 Debye length separation. Comparing the v-velocity

contours of figure 32 to figure 28 it is seen that there will

be a decrease in current to the inner surface of the lower

plate because of a slower perpendicular velocity. At the same

time, there is not much of an increase in current to the outer

surface. The floating potential thus increases in order to

impede more of the electrons and balance the overall current.

The calculated floating potential value for this case is

plotted as a contour in figure 34 to show that the bottom

plate has not been fully enveloped in the potential field

created by the top plate.
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Figure 39. Floating potential of the bottom plate as

a function of separation distance: _=5k D,

_p(_)=-50, u.=7800 m/s, To=0.2 eV, _=16 amu
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At even closer distances, the current to the inner

surface of the bottom plate is nearly zero. In figure 36 the

v-velocity contour line adjacent to the inner surface of the

lower plate has a positive value which means that the ions are

being drawn away. Figure 37 shows the resulting density

contours. The density rapidly decreases in the flow direction

between the plates as the ions are being drawn away from the

bottom plate and absorbed by the top plate. The potential

field created by the top plate, however, has fully enveloped

the bottom plate as shown in figure 38. The greater potential

gradient causes an increase in current to the outer surface of

the lower plate by increasing the perpendicular velocity.

Just downstream of the lower plate, this causes an increase in

density in the flow direction as the near-void region is

replenished by the accelerated ions as shown in figure 37.

The increase in current to the outer surface of the lower

plate is enough to raise (i.e. less negative) the floating

potential slightly.

The adjustment by the bottom plate is not a monotonic one

as it would be if it charged increasingly negative as it

approached the top plate. Instead, there is an oscillation in

the floating potential as a lack and then an increase in ionic

current causes the bottom plate to charge more and then less

negative respectively. The increase (i.e. less negative) in

the floating potential is expected to continue for still

smaller separations until the two plates come in contact to

form a single system at which time the bottom plate will



73

rapidly charge to a potential near that of the top plate. The

computer code developed could not be used for the smaller

separations because of the near-zero density above the lower

plate that would result.

When studying the docking of two spacecraft, the problem

was modeled in a quasi-static manner. The flow field was

calculated at different separation distances independently.

This assumes that the electric sheath structure of the two

plates establishes itself on a time scale much less than the

movement of the plates toward one another.

An estimate of the time scale can be made by assuming

that the sheath is established in the time required by an ion

to pass through the sheath [ref. 28]. At a constant

acceleration and assuming the ion starts from rest, the time

of flight can be estimated by tf =(2dr mi/eE) la. Using the

results from the single flat plate case study presented

previously, a time scale on the order of 104 seconds is

calculated where the distance of flight df is taken to be the

sheath width and the electric field is the value at the sheath

edge (E=0.04 V/m). This is a conservative estimate

considering that the electric field strength increases closer

to the plates. Assuming that docking spacecraft will approach

each other at no more than 0.01 m/s just prior to contact, the

time during which a spacecraft five Debye lengths long is at

a given point in space is on the order of a second. This

simple analysis shows that the quasi-static assumption is

appropriate.
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In the analysis, the plates were assumed to be metallic.

This allowed a single electric potential to be defined for the

entire plate surface. If the plates were composed of a

dielectric material, however, the potential need not be

constant since charge cannot distribute itself freely.

The flow field about a dielectric plate would be

different than those found here, especially in the case of

spacecraft docking. It was found that the flow field was not

symmetric about the axes of the plates for small separation

distances. In the case of a metallic plate, the lack of

symmetry caused the floating potential of the bottom plate to

oscillate upon approach. For a dielectric plate, there would

no longer be an oscillation. The inner surface would charge

continuously to a high negative potential due to the lack of

ionic current, and vice-versa for the outer surface. The

potential difference would no longer be between the top and

bottom plates but between the inner and outer surfaces of the

bottom plate. This type of charging, known as differential

charging, can result in electrostatic discharges between

surfaces, and ultimately interfere with spacecraft operation

[ref. 29].



CHAPTER V

CONCLUSION

The steady state interaction of two electrically biased

parallel plates immersed in a flowing plasma characteristic of

low earth orbit is studied numerically. Fluid equations are

developed to describe the motion of the cold positively

charged plasma ions, and are solved using finite-differences

in two dimensions on a Cartesian grid. A variable and

staggered grid is employed. The behavior of the plasma

electrons is assumed to be described by the Maxwell-Boltzmann

distribution.

Results are compared to an analytical and a particle

simulation technique for a simplified flow geometry consisting

of a single negatively biased plate. Comparison of the extent

of the electrical disturbance into the flowing plasma and the

magnitude of the electrical current collected by the plate is

very good.

The contribution of the present study is on the

interaction between two negatively biased parallel plates.

The first case study presented describes the interaction of

75
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equally biased plates. The separation distance at which the

electric current collected by either plate decreases by five

and twenty percent is determined as a function of applied

potential. The percent decreases were based on a non-

interacting case. It is found that the relationship between

separation distance and applied potential is not linear.

Rather, there is a rapid change at less negative potentials

but levels off at greater distances for larger negative

potentials. The decrease in the overall current is caused by

a decrease in ionic density in the region between the plates.

As the separation between the plates decreases, the plates

collect the ions at a faster rate than they are supplied to

the middle region by the oncoming plasma flow.

These results can be applied by space shuttle

experimenters who need to know if the plasma flow field around

their experiment will be affected by the electric potential of

the shuttle.

The second case study presented simulates the docking of

spacecraft in orbit. Two plates of unequal potential are

moved toward one another in a quasi-static manner. One plate

is held at a large negative potential while the other floats

electrically in the resulting potential field. This problem

is applicable to the docking of the shuttle with the proposed

space station. The space station will have a relatively large

constant negative potential due to solar array operation, and

the shuttle will attain a potential determined mainly by a

balance of ambient current. The potential of the floating
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plate is determined as a function of separation between the

plates.

As the two plates approach one another, there is a

decrease in current to the inner surface of the floating

plate. This causes its potential to increase negatively.

This trend reverses itself, however, as the plates get even

closer due to an increase in current to the outer surface of

the floating plate. The floating plate does not charge

continuously negative as it approaches the other more

negatively biased plate. Instead, it charges more and then

less negative as ionic current decreases and then increases

respectively upon approach. When the plates come into

contact, it is expected that the electrically floating plate

will charge rapidly negative to a potential near that of the

other plate.

The computer code developed could not simulate the actual

contact of the two plates. This is because the program cannot

account for regions of zero density which occur when the two

plates come within a couple Debye lengths of each other.

The limitation of the present approach is its inability

to deal with regions of zero density where the continuum

assumption fails. A way to circumvent this problem would be

to deal with momentum as the fundamental variable instead of

velocity and mass separately. Regions of zero momentum could

then be viewed either as having no velocity or no mass, and

the influence of those regions could be propagated correctly.

When the variables are dealt with separately, situations can
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occur where there is no mass but a velocity field still exists

especially in the present study where mass is being absorbed

by the plates.

Overall, the results from the study look promising. The

ability of the continuum approach to model an essentially

collisionless flow problem is good. In future work, dealing

with momentum as the fundamental variable is the first step.

Also, the concepts of temperature and pressure need to be

incorporated so that there are other mechanisms for the

dissipation of ionic density concentrations. The results

presented should also apply to three-dimensional problems, but

only for the limited range of geometrical configurations dealt

with here.



REFERENCES

i.

•

•

.

•

.

•

•

•

i0.

ii.

12.

Tanenbaum, B. Samuel, plasma physics, McGraw-Hill, New

York, 1967.

,,Spacecraft/Plasma Interactions and Electromagnetic

Effects in LEO and Polar Orbit," Culham Laboratory, UK,

March 1989.

de Leeuw, J.H., 'A Brief Introduction to Ionospheric

Aerodynamics,' Proceedings of the Fifth International

Symposium on Rarefied Gas Dynamics, edited by C.L.

Brundin, Vol. II, Academic Press, New York, 1967, pp.

1561-1586.

Stone, Nobie H., 'The Aerodynamics of Bodies in a

Rarefied Ionized Gas with Applications to Spacecraft

Environmental Dynamics,' NASA TP-1933, 1981.

Chen, F.F., "Electric Probes," Plasma

Techniques, Academic Press, New York, 1965.

Diagnostics

Chung, P.M., Talbot, L., Touryan, K.J., 'Part 2.

Continuum Probes,' AIAA Journal, Vol. 12, No. 2, Feb.

1974, pp. 144-154•

Holt, E.H., Haskell, R.E., Foundations of Plasma

_, Macmillan Company, New York, 1965.

Su, C.H., "Compressible Plasma Flow over a Biased Body,"

AIAA Journal, Vol. 3, No. 5, May 1965, pp. 842-848.

Smy, P.R., 'The Use of Langmuir Probes in the Study of
' Advances in Physics, Vol 25, NoHigh Pressure Plasmas, - •

5, pp. 517-553•

Su, C.H., Lam, S.H., "Continuum Theory of Spherical

Electrostatic Probes," Physics of Fluids, Vol. 6, No. i0,

Oct. 1963, pp. 1479-1491•

Cohen, I.M., "Asymptotic Theory of Spherical

Electrostatic Probes in a Slightly Ionized, Collision-

Dominated Gas," Physics of Fluids, Vol. 6, No. i0, Oct.

1963, pp. 1492-1499.

Lam, S.H., "A General Theory for the Flow of Weakly

" AIAA Journal, Vol. 2, No 2, Feb 1964,Ionized Gases, • -

pp. 256-262•

79



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

8O

Stahl, N., Su, C.H., "Theory of Continuum Flush Probes,"
Physics of Fluids, Vol. 14, No. 7, July 1971, pp. 1366-
1376.

Giles, C.R., Clements, R.M., Smy, P.R., 'Flush Probe

Studies of Plasma Flow over a Flat Plate: Theory,' J.

Phys. D: Appl. Phys., Vol. 12, 1979, pp. 1685-1697.

Johnson, R.A., De Boer, P.C.T., 'Theory of Ion Boundary

Layers,' AIAA Journal, Vol. i0, May 1972, pp. 664-670

Russo, A.J., Touryan, K.J., "Experimental and Numerical

Studies of Flush Electrostatic Probes in Hypersonic

Ionized Flows: II. Theory," AIAA Journal, Vol. I0, No.

12, Dec. 1972, pp. 1675-1678.

Chung, Paul M., Blankenship, Victor D., 'Theory of

Electrostatic Double Probe Comprised of Two Parallel

Plates,' AIAA Journal, Vol. 4, No. , March 1966, pp. 442-

450.

Vitello, P., Cerjan, C., Braun, D., 'Flow: A Two-

Dimensional Time-Dependent Hydrodynamical Ion Extraction

Model,' Phys. Fluids B, Vol. 4, No. 6, June 1992, pp.

1447-1456.

Kraus, Lester, Watson, Kenneth M., 'Plasma Motion Induced

by Satellites in the Ionosphere,' Physics of Fluids, Vol.

i, No. 6, Nov.-Dec. 1958, pp. 480-488.

Lam, S.H., 'On the Capabilities of the Cold-Ion

Approximation in Collisionless Plasma Flows,' Proceedings

of the Fifth International Symposium on Rarefied Gas

Dynamics, edited by C.L. Brundin, Vol. II, Academic

Press, New York, 1967, pp. 1603-1621.

Lam, S.H., Greenblatt, M., 'Flow of a Collisionless

' AIAA Journal, Vol. 3, No i0, Oct.Plasma over a Cone,

1965, pp. 1850-1855.

Anderson, John D. Jr., Fundamentals of Aerodvnamics, 2nd

ed., McGraw-Hill, 1991.

Hohl, Frank, Wood, George P., 'The Electrostatic and

Electromagnetic Drag Forces on a Spherical Satellite in

a Rarefied Partially Ionized Atmosphere,' Proceeding of

the 3rd International Symposium on Rarefied Gas Dynamics,

edited by J.A. Laurmann, Vol. II, Academic Press, New

York, 1963, pp. 45-64.



24.

25.

26.

27.

28.

29.

81

Davis, A.H., Harris, I., 'Interaction of a Charged

Satellite with the Ionosphere,' Proceedings of the 2nd

International Symposium on Rarefied Gas Dynamics, edited

by L. Talbot, Academic Press, New York, 1961, pp. 691-
699.

Wang, J., Hastings, D.E., 'Ionospheric Plasma Flow Over

Large High-Voltage Space Platforms. I: Ion-Plasma-Time

Scale Interactions of a Plate at Zero Angle of Attack,'

Phys. Fluids B, Vol. 4, No. 6, June 1992, pp. 1597-1614.

Anderson, Dale A., Tannehill, John C., Pletcher, Richard

H., Computational Fluid Mechanics and Heat Transfer,

Hemisphere Publishing Corporation, New York, 1984.

Chiu, Ing-Tsau, 'Prediction of Laminar Flows over a

Rearward-facing Step Using the Partially-Parabolized
Navier-Stokes Equation,' Master's Thesis, Mechnical

Engineering Department, Iowa State University, Ames Iowa,
1984.

Ginzburg, M.A., 'Double Electrical Layer on the Surface

of a Satellite,' ARS Journal Supplement, Nov. 1962, pp.
1794-1800.

Purvis, Carolyn K., et.al., 'Design Guidelines for

Assessing and Controlling Spacecraft Charging Effects,'

NASA TP-2361, September 1984.



J_
/ "%

Form Approved

REPORT DOCUMENTATION PAGE OiaNo 0704-0188

Public reportingburden for this correctionof information is es(imateO'to average I hour per response, /nctuding the t/me for reviewing/ne(ruetions,search/n0 existingdata sources,
gatheringand maintainingthe data needed, and completingand reviewingthe collectionof information. Send comments regardingthis burdenestimate or any other aspect of this
collectionof information,includingsuggestionsfor reducingthis burden,to WashingtonHeadquartersServices,Directorate for informationOperationsand Reports, 1215 Jefferson
Davis Highway,Suite 1204, Arlington,VA 22202-4302, and to the Office of Management and Budget, PaperworkReductionProject (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 1993 Final Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ionospheric Plasma Flow About a System of Electrically Biased Flat Plates

6. AUTHOR{S)

Joel L. Herr

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Sverdrup Technology, Inc.

Lewis Research Center Group

2001 Aerospace Parkway
Brook Park, Ohio 44142

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

11. SUPPLEMENTARY'NOTES

WU-506-41-52

C-NAS3-25266

PERFORMING ORGANIZATION
REPORT NUMBER

E-7732

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-191119

12a.

Project Manager, Dale C. Ferguson, Power Technology Division, NASA Lewis Research Center, (216) 433-2298. This

paper was submitted in partial fulfillment of the requirements for the degree Master's of Science in Mechanical Engineer-

ing to Cleveland State University, Cleveland, Ohio.

DISTRIBUTION/AVAILABILJTY STATEMENT ....... 12n. DISTRIBUTIONCODE

Unclassified - Unlimited

Subject Category 18

13. ABSTRACT(Maximum200 words)

The steady state interaction of two electrically biased parallel plates immersed in a flowing plasma characteristic of low earth orbit is
!siudied numerically. Fluid equations are developed to describe the motion of the cold positively charged plasma ions, and are solved
_using finite-differences in two dimensions on a Cartesian grid. The behavior of the plasma electrons is assumed to be described by the
MaxwelI-Boltzmann distribution. Results are compared to an analytical and a particle simulation technique for a simplified flow

- geometry consisting of a single seml-infinite negatively biased plate. Comparison of the extent of the electrical disturbance into the
- flowing plasma and the magnitude of the current collected by the plate is very good. The interaction of two equally biased parallel

plates is studied as a function of applied potential. The separation distance at which the current collected by either plate decreases by
five and twenty percent is determined as a function of applied potential. The percent decreases were based on a non-interacting case.

i The decrease in overall current is caused by a decrease in ionic density in the region between the plates. As the separation between
the plates decreases, the plates collect the ions at a faster rate than they are supplied to the middle region by the oncoming plasma
flow. The docking of spacecraft in orbit is simulated by moving two plates of unequal potential toward one another in a quasi-static
manner. One plate is held at a large negative potential while the other floats electrically in the resulting potential field. It is found that

! the floating plate does not charge continuously negative as it approaches the other more negatively biased plate. Instead, it charges

more and then less negative as ionic current decreases and then increases respectively upon approach. When the two plates come into
contact, it is expected that the electrically floating plate will charge rapidly negative to a potential near that of the other plate.

1,=. SUBJECTTERMS

Ionospheric aerodynamics; Dual spacecraft interactions; Plasma flow interactions

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION"

OF ABSTRACT

Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

82
16. PRICE CODE

A05
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102


